on wiener index of graph complements
نویسندگان
چکیده
let $g$ be an $(n,m)$-graph. we say that $g$ has property $(ast)$if for every pair of its adjacent vertices $x$ and $y$, thereexists a vertex $z$, such that $z$ is not adjacentto either $x$ or $y$. if the graph $g$ has property $(ast)$, thenits complement $overline g$ is connected, has diameter 2, and itswiener index is equal to $binom{n}{2}+m$, i.e., the wiener indexis insensitive of any other structural details of the graph $g$.we characterize numerous classes of graphs possessing property $(ast)$,among which are trees, regular, and unicyclic graphs.
منابع مشابه
On Wiener Index of Graph Complements
Let G be an (n, m)-graph. We say that G has property (∗) if for every pair of its adjacent vertices x and y, there exists a vertex z, such that z is not adjacent to either x or y. If the graph G has property (∗), then its complement G is connected, has diameter 2, and its Wiener index is equal to ( n 2 ) + m, i.e., the Wiener index is insensitive of any other structural details of the graph G. ...
متن کاملPeripheral Wiener Index of a Graph
The eccentricity of a vertex $v$ is the maximum distance between $v$ and anyother vertex. A vertex with maximum eccentricity is called a peripheral vertex.The peripheral Wiener index $ PW(G)$ of a graph $G$ is defined as the sum ofthe distances between all pairs of peripheral vertices of $G.$ In this paper, weinitiate the study of the peripheral Wiener index and we investigate its basicproperti...
متن کاملThe Generalized Wiener Polarity Index of some Graph Operations
Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.
متن کاملsteiner wiener index of graph products
the wiener index $w(g)$ of a connected graph $g$ is defined as $w(g)=sum_{u,vin v(g)}d_g(u,v)$ where $d_g(u,v)$ is the distance between the vertices $u$ and $v$ of $g$. for $ssubseteq v(g)$, the {it steiner distance/} $d(s)$ of the vertices of $s$ is the minimum size of a connected subgraph of $g$ whose vertex set is $s$. the {it $k$-th steiner wiener index/} $sw_k(g)$ of $g$ ...
متن کاملThe edge-Wiener index of a graph
If G is a connected graph, then the distance between two edges is, by definition, the distance between the corresponding vertices of the line graph of G. The edge-Wiener index We of G is then equal to the sum of distances between all pairs of edges of G. We give bounds on We in terms of order and size. In particular we prove the asymptotically sharp upper bound We(G) ≤ 25 55 n5 + O(n9/2) for gr...
متن کاملSteiner Wiener Index of Graph Products
The Wiener index W (G) of a connected graph G is defined as W (G) = ∑ u,v∈V (G) dG(u, v) where dG(u, v) is the distance between the vertices u and v of G. For S ⊆ V (G), the Steiner distance d(S) of the vertices of S is the minimum size of a connected subgraph of G whose vertex set is S. The k-th Steiner Wiener index SWk(G) of G is defined as SWk(G) = ∑ S⊆V (G) |S|=k d(S). We establish expressi...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
transactions on combinatoricsناشر: university of isfahan
ISSN 2251-8657
دوره 3
شماره 2 2014
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023